Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS Negl Trop Dis ; 18(2): e0011967, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38394298

ABSTRACT

INTRODUCTION: Schistosomiasis is a significant public health concern, especially in Sub-Saharan Africa. Conventional microscopy is the standard diagnostic method in resource-limited settings, but with limitations, such as the need for expert microscopists. An automated digital microscope with artificial intelligence (Schistoscope), offers a potential solution. This field study aimed to validate the diagnostic performance of the Schistoscope for detecting and quantifying Schistosoma haematobium eggs in urine compared to conventional microscopy and to a composite reference standard (CRS) consisting of real-time PCR and the up-converting particle (UCP) lateral flow (LF) test for the detection of schistosome circulating anodic antigen (CAA). METHODS: Based on a non-inferiority concept, the Schistoscope was evaluated in two parts: study A, consisting of 339 freshly collected urine samples and study B, consisting of 798 fresh urine samples that were also banked as slides for analysis with the Schistoscope. In both studies, the Schistoscope, conventional microscopy, real-time PCR and UCP-LF CAA were performed and samples with all the diagnostic test results were included in the analysis. All diagnostic procedures were performed in a laboratory located in a rural area of Gabon, endemic for S. haematobium. RESULTS: In study A and B, the Schistoscope demonstrated a sensitivity of 83.1% and 96.3% compared to conventional microscopy, and 62.9% and 78.0% compared to the CRS. The sensitivity of conventional microscopy in study A and B compared to the CRS was 61.9% and 75.2%, respectively, comparable to the Schistoscope. The specificity of the Schistoscope in study A (78.8%) was significantly lower than that of conventional microscopy (96.4%) based on the CRS but comparable in study B (90.9% and 98.0%, respectively). CONCLUSION: Overall, the performance of the Schistoscope was non-inferior to conventional microscopy with a comparable sensitivity, although the specificity varied. The Schistoscope shows promising diagnostic accuracy, particularly for samples with moderate to higher infection intensities as well as for banked sample slides, highlighting the potential for retrospective analysis in resource-limited settings. TRIAL REGISTRATION: NCT04505046 ClinicalTrials.gov.


Subject(s)
Artificial Intelligence , Microscopy , Schistosoma haematobium , Schistosomiasis haematobia , Gabon , Microscopy/methods , Retrospective Studies , Schistosomiasis haematobia/diagnosis , Schistosomiasis haematobia/urine , Sensitivity and Specificity , Humans
2.
J Med Imaging (Bellingham) ; 10(4): 044005, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37554627

ABSTRACT

Purpose: Automated diagnosis of urogenital schistosomiasis using digital microscopy images of urine slides is an essential step toward the elimination of schistosomiasis as a disease of public health concern in Sub-Saharan African countries. We create a robust image dataset of urine samples obtained from field settings and develop a two-stage diagnosis framework for urogenital schistosomiasis. Approach: Urine samples obtained from field settings were captured using the Schistoscope device, and S. haematobium eggs present in the images were manually annotated by experts to create the SH dataset. Next, we develop a two-stage diagnosis framework, which consists of semantic segmentation of S. haematobium eggs using the DeepLabv3-MobileNetV3 deep convolutional neural network and a refined segmentation step using ellipse fitting approach to approximate the eggs with an automatically determined number of ellipses. We defined two linear inequality constraints as a function of the overlap coefficient and area of a fitted ellipses. False positive diagnosis resulting from over-segmentation was further minimized using these constraints. We evaluated the performance of our framework on 7605 images from 65 independent urine samples collected from field settings in Nigeria, by deploying our algorithm on an Edge AI system consisting of Raspberry Pi + Coral USB accelerator. Result: The SH dataset contains 12,051 images from 103 independent urine samples and the developed urogenital schistosomiasis diagnosis framework achieved clinical sensitivity, specificity, and precision of 93.8%, 93.9%, and 93.8%, respectively, using results from an experienced microscopist as reference. Conclusion: Our detection framework is a promising tool for the diagnosis of urogenital schistosomiasis as our results meet the World Health Organization target product profile requirements for monitoring and evaluation of schistosomiasis control programs.

3.
Trop Med Infect Dis ; 8(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36977176

ABSTRACT

Designing new and inclusive diagnostic tools to detect Neglected Tropical Diseases (NTDs) to achieve rational disease control requires a co-design process where end-users' input is important. Failure to involve all potential end-users in new diagnostics for NTDs can result in low use and adoption failure, leading to persistent infection hot spots and ineffective disease control. There are different categories of potential end-users of new diagnostic tools for NTD control, and it is unclear if there are differences between the user efficiency, effectiveness, perception, and acceptability across these end-user categories. This study evaluated the usability, user perception, contextual factors affecting the user's experience, and acceptability of a new digital optical diagnostic device for NTDs across three types of potential end users. A total of 21 participants were tested. Laboratory scientists, technicians, and Community Health Extension Workers (CHEWs) in training achieved similar scores on the usability and user perception questionnaires with no statistically significant difference between end-user categories. All participants also have high scores for the user perception domains which strongly correlate with the acceptability of the AiDx NTDx Assist device. This study indicates that, by providing digital diagnostic tools in combination with minimal training and support, CHEWs undergoing training and, by extension, CHEWs post-training, can be involved in the diagnoses of NTDs, potentially enhancing a community's capabilities to diagnose, treat, and control NTDs.

4.
Parasitology ; 150(2): 137-149, 2023 02.
Article in English | MEDLINE | ID: mdl-36683384

ABSTRACT

Diagnosis of soil-transmitted helminth (STH) and schistosome infections relies largely on conventional microscopy which has limited sensitivity, requires highly trained personnel and is error-prone. Rapid advances in miniaturization of optical systems, sensors and processors have enhanced research and development of digital and automated microscopes suitable for the detection of these diseases in resource-limited settings. While some studies have reported proof-of-principle results, others have evaluated the performance of working prototypes in field settings. The extensive commercialization of these innovative devices has, however, not yet been achieved. This review provides an overview of recent publications (2010­2022) on innovative field applicable optical devices which can be used for the diagnosis of STH and schistosome infections. Using an adapted technology readiness level (TRL) scale taking into account the WHO target product profile (TPP) for these diseases, the developmental stages of the devices were ranked to determine the readiness for practical applications in field settings. From the reviewed 18 articles, 19 innovative optical devices were identified and ranked. Almost all of the devices (85%) were ranked with a TRL score below 8 indicating that, most of the devices are not ready for commercialization and field use. The potential limitations of these innovative devices were discussed. We believe that the outcome of this review can guide the end-to-end development of automated digital microscopes aligned with the WHO TPP for the diagnosis of STH and schistosome infections in resource-limited settings.


Subject(s)
Helminthiasis , Helminths , Optical Devices , Schistosomiasis , Animals , Humans , Soil , Feces , Prevalence , Helminthiasis/diagnosis , Schistosomiasis/diagnosis , Schistosoma
5.
Gates Open Res ; 6: 62, 2022.
Article in English | MEDLINE | ID: mdl-36540062

ABSTRACT

Background: Soil-transmitted helminths (STH) are targeted for control through mass drug-administration campaigns to prevent morbidity affecting at-risk groups in endemic regions. Although broadly successful, the use of albendazole and mebendazole achieved variable progress, with deficiencies against Trichuris trichiura and a predictable low efficacy against Strongyloides stercoralis. Novel drug combinations offer a potential solution, providing they can be delivered safely and maintain efficacy against all STH species. Here we present the protocol of a clinical trial to evaluate a fixed-dose combination (FDC) tablet containing albendazole and ivermectin that will be compared against albendazole against STH . Methods: An adaptive phase II/III randomized controlled trial will be undertaken in STH endemic sites in Ethiopia, Kenya and Mozambique to evaluate an oral FDC of 400 mg albendazole and either 9- or 18 mg ivermectin. FDC will be administered as a single dose or single doses over three-consecutive days and assessed against a single dose of 400 mg albendazole. In the phase II trial, 126 T. trichiura-infected children weighting 15 to 45 kg will be treated in a dose-escalation manner to determine safety objectives. In the phase III trial, 1097 participants aged 5 to 18 years old infected with T. trichiura, hookworm and S. stercoralis will be recruited to determine safety and efficacy. The trial will be open-label with blinded outcome assessors. Cure rate measured 21-days after-treatment in duplicate Kato-Katz is the primary efficacy outcome. Secondary objectives include efficacy evaluation by quantitative polymerase chain reaction (PCR) as an outcome measurement, description of pharmacokinetic parameters, palatability and acceptability evaluations, and monitoring of anthelmintic resistance. Conclusions: This trial with registrational goals seeks to evaluate an innovative fixed-dose combination of albendazole and ivermectin co-formulated tablets, with the goal of providing an anthelmintic regimen with improved efficacy and spectrum of coverage against STH. ClinicalTrials.gov registration: NCT05124691 (18/11/2021).

6.
Am J Trop Med Hyg ; 107(5): 1047-1054, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36252803

ABSTRACT

Conventional microscopy is the standard procedure for the diagnosis of schistosomiasis, despite its limited sensitivity, reliance on skilled personnel, and the fact that it is error prone. Here, we report the performance of the innovative (semi-)automated Schistoscope 5.0 for optical digital detection and quantification of Schistosoma haematobium eggs in urine, using conventional microscopy as the reference standard. At baseline, 487 participants in a rural setting in Nigeria were assessed, of which 166 (34.1%) tested S. haematobium positive by conventional microscopy. Captured images from the Schistoscope 5.0 were analyzed manually (semiautomation) and by an artificial intelligence (AI) algorithm (full automation). Semi- and fully automated digital microscopy showed comparable sensitivities of 80.1% (95% confidence interval [CI]: 73.2-86.0) and 87.3% (95% CI: 81.3-92.0), but a significant difference in specificity of 95.3% (95% CI: 92.4-97.4) and 48.9% (95% CI: 43.3-55.0), respectively. Overall, estimated egg counts of semi- and fully automated digital microscopy correlated significantly with the egg counts of conventional microscopy (r = 0.90 and r = 0.80, respectively, P < 0.001), although the fully automated procedure generally underestimated the higher egg counts. In 38 egg positive cases, an additional urine sample was examined 10 days after praziquantel treatment, showing a similar cure rate and egg reduction rate when comparing conventional microscopy with semiautomated digital microscopy. In this first extensive field evaluation, we found the semiautomated Schistoscope 5.0 to be a promising tool for the detection and monitoring of S. haematobium infection, although further improvement of the AI algorithm for full automation is required.


Subject(s)
Schistosoma haematobium , Schistosomiasis haematobia , Animals , Humans , Schistosomiasis haematobia/diagnosis , Schistosomiasis haematobia/drug therapy , Schistosomiasis haematobia/urine , Artificial Intelligence , Nigeria , Praziquantel/therapeutic use , Parasite Egg Count
7.
Glob Health Sci Pract ; 10(4)2022 08 30.
Article in English | MEDLINE | ID: mdl-36041843

ABSTRACT

Urinary schistosomiasis is a waterborne parasitic infection caused by Schistosoma haematobium that affects approximately 30 million people annually in Nigeria. Treatment and eradication of this infection require effective diagnostics. However, current diagnostic tests have critical shortcomings and consequently are of limited value to stakeholders throughout the health care system who are involved in targeting the diagnosis and subsequent control of schistosomiasis. New diagnostic devices that fit the local health care infrastructure and support the different stakeholder diagnostic strategies remain a critical need. This study focuses on understanding, by means of Q-methodology, the context of use and application of a new diagnostic device that is needed to effectively diagnose urinary schistosomiasis in Oyo State, Nigeria. Q-methodology is a technique that investigates subjectivity by exploring how stakeholders rank-order opinion statements about a phenomenon. In this study, 40 statements were administered to evaluate stakeholder perspectives on the context of use and application of potential new diagnostic devices and how these perspectives or viewpoints are shared with other stakeholders. Potential new diagnostic devices will need to be deployable to remote or distant communities, be affordable, identify and confirm infection status before treatment in patients whose diagnosis of urinary schistosomiasis is based on self-reporting, and equip health care facilities with diagnostic devices optimized for the local setting while requiring local minimal infrastructural settings. Similarly, the context of use and application of a potential new diagnostic device for urinary schistosomiasis is primarily associated with the tasks stakeholders throughout the health care system perform or procedures employed. These findings will guide the development of new diagnostic devices for schistosomiasis that match the contextual landscape and diagnostic strategies in Oyo.


Subject(s)
Schistosomiasis haematobia , Animals , Humans , Nigeria , Prevalence , Schistosoma haematobium , Schistosomiasis haematobia/diagnosis , Schistosomiasis haematobia/parasitology
8.
Micromachines (Basel) ; 13(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35630110

ABSTRACT

For many parasitic diseases, the microscopic examination of clinical samples such as urine and stool still serves as the diagnostic reference standard, primarily because microscopes are accessible and cost-effective. However, conventional microscopy is laborious, requires highly skilled personnel, and is highly subjective. Requirements for skilled operators, coupled with the cost and maintenance needs of the microscopes, which is hardly done in endemic countries, presents grossly limited access to the diagnosis of parasitic diseases in resource-limited settings. The urgent requirement for the management of tropical diseases such as schistosomiasis, which is now focused on elimination, has underscored the critical need for the creation of access to easy-to-use diagnosis for case detection, community mapping, and surveillance. In this paper, we present a low-cost automated digital microscope-the Schistoscope-which is capable of automatic focusing and scanning regions of interest in prepared microscope slides, and automatic detection of Schistosoma haematobium eggs in captured images. The device was developed using widely accessible distributed manufacturing methods and off-the-shelf components to enable local manufacturability and ease of maintenance. For proof of principle, we created a Schistosoma haematobium egg dataset of over 5000 images captured from spiked and clinical urine samples from field settings and demonstrated the automatic detection of Schistosoma haematobium eggs using a trained deep neural network model. The experiments and results presented in this paper collectively illustrate the robustness, stability, and optical performance of the device, making it suitable for use in the monitoring and evaluation of schistosomiasis control programs in endemic settings.

9.
Nanoscale ; 14(5): 1885-1895, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35044397

ABSTRACT

Nucleic-acid detection is crucial for basic research as well as for applications in medicine such as diagnostics. In resource-limited settings, however, most DNA-detection diagnostic schemes are inapplicable since they rely on expensive machinery, electricity, and trained personnel. Here, we present an isothermal DNA detection scheme for the diagnosis of pathogenic DNA in resource-limited settings. DNA was extracted from urine and blood samples using two different instrument-free methods, and amplified using Recombinase Polymerase Amplification with a sensitivity of <10 copies of DNA within 15 minutes. Target DNA was bound by dCas9/sgRNA that was labelled with a DNA oligomer to subsequently induce Rolling Circle Amplification. This second amplification step produced many copies of a G-quadruplex DNA structure that facilitates a colorimetric readout that is visible to the naked eye. This isothermal DNA-detection scheme can be performed at temperatures between 20-45 °C. As an example of the applicability of the approach, we isothermally (23 °C) detected DNA from a parasite causing visceral leishmaniasis that was spiked into buffer and resulted in a sensitivity of at least 1 zeptomole. For proof of principle, DNA spiked into blood was coupled to the CRISPR-dCas9-based detection scheme yielding a colorimetric readout visible to the naked eye. Given the versatility of the guide-RNA programmability of targets, we envision that this DNA detection scheme can be adapted to detect any DNA with minimal means, which facilitates applications such as point-of-care diagnostics in resource-limited settings.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Nucleic Acid Amplification Techniques , DNA , Point-of-Care Testing , RNA, Guide, Kinetoplastida
10.
PLoS Negl Trop Dis ; 15(6): e0009405, 2021 06.
Article in English | MEDLINE | ID: mdl-34138846

ABSTRACT

Inadequate and nonintegrated diagnostics are the Achilles' heel of global efforts to monitor, control, and eradicate neglected tropical diseases (NTDs). While treatment is often available, NTDs are endemic among marginalized populations, due to the unavailability or inadequacy of diagnostic tests that cause empirical misdiagnoses. The need of the hour is early diagnosis at the point-of-care (PoC) of NTD patients. Here, we review the status quo of PoC diagnostic tests and practices for all of the 24 NTDs identified in the World Health Organization's (WHO) 2021-2030 roadmap, based on their different diagnostic requirements. We discuss the capabilities and shortcomings of current diagnostic tests, identify diagnostic needs, and formulate prerequisites of relevant PoC tests. Next to technical requirements, we stress the importance of availability and awareness programs for establishing PoC tests that fit endemic resource-limited settings. Better understanding of NTD diagnostics will pave the path for setting realistic goals for healthcare in areas with minimal resources, thereby alleviating the global healthcare burden.


Subject(s)
Neglected Diseases/prevention & control , Point-of-Care Testing , Tropical Climate , Global Health , Humans
11.
Front Public Health ; 9: 622809, 2021.
Article in English | MEDLINE | ID: mdl-33681133

ABSTRACT

The control and elimination of schistosomiasis have over the last two decades involved several strategies, with the current strategy by the World Health Organization (WHO) focusing mainly on treatment with praziquantel during mass drug administration (MDA). However, the disease context is complex with an interplay of social, economic, political, and cultural factors that may affect achieving the goals of the Neglected Tropical Disease (NTD) 2021-2030 Roadmap. There is a need to revisit the current top-down and reactive approach to schistosomiasis control among sub-Saharan African countries and advocate for a dynamic and diversified approach. This paper highlights the challenges of praziquantel-focused policy for schistosomiasis control and new ways to move from schistosomiasis control to elimination in sub-Saharan Africa. We will also discuss an alternative and diversified approach that consists of a Systems Thinking Framework that embraces intersectoral collaboration fully and includes co-creating locally relevant strategies with affected communities. We propose that achieving the goals for control and elimination of schistosomiasis requires a bottom-up and pro-active approach involving multiple stakeholders. Such a pro-active integrated approach will pave the way for achieving the goals of the NTD 2021-2030 roadmap for schistosomiasis, and ultimately improve the wellbeing of those living in endemic areas.


Subject(s)
Schistosomiasis , Africa South of the Sahara/epidemiology , Humans , Mass Drug Administration , Neglected Diseases/drug therapy , Praziquantel/therapeutic use , Schistosomiasis/drug therapy
12.
Glob Health Sci Pract ; 8(3): 549-565, 2020 09 30.
Article in English | MEDLINE | ID: mdl-33008863

ABSTRACT

The rapid growth of point-of-care (POC) diagnostic tests necessitates a clear vision of when, where, and why a new POC diagnostic test needs to be developed and how it can be used in a way that matches a local health care context. Here, we present an innovative approach toward developing a concept target product profile (CTPP), which is a new mapping tool that helps researchers match a new diagnostic test to a specific local health care context early in the research and development process. As a case study, we focus on the diagnosis of visceral leishmaniasis (VL) in rural resource-limited regions of Kenya and Uganda. Our stepwise approach integrates elements of design thinking and uses a combination of literature reviews and field research for a context analysis of local health care systems and practices. We then use visual thinking in the form of Gigamaps and patient journeys to identify use case scenarios and to present our findings from the field research to key stakeholders. The use case scenarios describe the diagnostic scope of a new POC test based on the feasibility of the new test, the local need, and the contextual fit. For our case study of VL, we identify 2 valuable use case scenarios, namely test-of-cure and screening and confirmation, and we formulate a CTPP. We anticipate that a CTPP will enable researchers to match a new POC diagnostic test during the research and development process to the local health care context in which it will be used.


Subject(s)
Biomedical Research/organization & administration , Leishmaniasis, Visceral/diagnosis , Point-of-Care Testing/organization & administration , Developing Countries , Humans , Kenya , Organizational Case Studies , Stakeholder Participation , Uganda
13.
Nano Lett ; 18(10): 6469-6474, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30187755

ABSTRACT

Solid-state nanopores have emerged as promising platforms for biosensing including diagnostics for disease detection. Here we show nanopore experiments that detect CRISPR-dCas9, a sequence-specific RNA-guided protein system that specifically binds to a target DNA sequence. While CRISPR-Cas9 is acclaimed for its gene editing potential, the CRISPR-dCas9 variant employed here does not cut DNA but instead remains tightly bound at a user-defined binding site, thus providing an excellent target for biosensing. In our nanopore experiments, we observe the CRISPR-dCas9 proteins as local spikes that appear on top of the ionic current blockade signal of DNA molecules that translocate through the nanopore. The proteins exhibit a pronounced blockade signal that allows for facile identification of the targeted sequence. Even at the high salt conditions (1 M LiCl) required for nanopore experiments, dCas9 proteins are found to remain stably bound. The binding position of the target sequence can be read from the spike position along the DNA signal. We anticipate applications of this nanopore-based CRISPR-dCas9 biosensing approach in DNA-typing based diagnostics such as quick disease-strain identification, antibiotic-resistance detection, and genome typing.


Subject(s)
Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , DNA/isolation & purification , Nanopores , Binding Sites , DNA/chemistry , DNA/genetics , Humans , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...